Asksia AI LOGO

Sia

wanggx11174's Question
Math
Posted 8 months ago
请用中文回答
4. 设 X,YX, Y 是线性赋范空间, TL(X,Y)T \in L(X, Y) 定义其算子范数 T=supxXx=0Txx\|T\|=\sup _{x \in X x=0} \frac{\|T x\|}{\|x\|} \cdot
30
证明: T=sup1Tx=sup1Tx\|T\|=\sup _{\|\| \|-1}\|T x\|=\sup _{\|\| \| \leq 1}\|T x\|
Sign in to unlock the answer
Answer from Sia
Posted 8 months ago
Solution by Steps
step 1
定义算子范数 TT 的表达式:T=supxX,x0Txx \|T\| = \sup_{x \in X, x \neq 0} \frac{\|Tx\|}{\|x\|}
step 2
证明 T=supx=1Tx \|T\| = \sup_{\|x\| = 1} \|Tx\|
step 3
x=1 \|x\| = 1 ,则 T=supx=1Tx \|T\| = \sup_{\|x\| = 1} \|Tx\|
step 4
x1 \|x\| \leq 1 ,则 T=supx1Tx \|T\| = \sup_{\|x\| \leq 1} \|Tx\|
step 5
综上所述,T=supx=1Tx=supx1Tx \|T\| = \sup_{\|x\| = 1} \|Tx\| = \sup_{\|x\| \leq 1} \|Tx\|
Answer
T=supx=1Tx=supx1Tx \|T\| = \sup_{\|x\| = 1} \|Tx\| = \sup_{\|x\| \leq 1} \|Tx\|
Key Concept
算子范数
Explanation
算子范数是线性赋范空间中算子的一个重要度量,表示算子作用下向量长度的最大变化率。

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question