Asksia AI LOGO

Sia

青州's Question
Chemistry
Posted 9 months ago

What is the ΔG\Delta G^{\circ} for the following reaction from the equilibrium constant at the temperature given?
CaCO33( s)CaO(s)+CO2( g)T=900CKp=1.04
\mathrm{CaCO}_{3} 3(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{T}=900^{\circ} \mathrm{C} \mathrm{Kp}=1.04
Sign in to unlock the answer
Answer from Sia
Posted 9 months ago
Solution
1
Identify the reaction: The given reaction is CaCO3(s)CaO(s)+CO2(g)\mathrm{CaCO}_{3}(\mathrm{s}) \rightarrow \mathrm{CaO}(\mathrm{s}) + \mathrm{CO}_{2}(\mathrm{g}) at T=900CT=900^{\circ} \mathrm{C} with Kp=1.04\mathrm{Kp}=1.04
2
Use the relationship between $\Delta G^{\circ}$ and $K_p$: The standard Gibbs free energy change (ΔG\Delta G^{\circ}) for a reaction can be calculated using the equation: ΔG=RTlnKp \Delta G^{\circ} = -RT \ln K_p where RR is the gas constant (8.314Jmol1K18.314 \, \mathrm{J \, mol^{-1} \, K^{-1}}) and TT is the temperature in Kelvin
3
Convert temperature to Kelvin: T=900C+273.15=1173.15K T = 900^{\circ} \mathrm{C} + 273.15 = 1173.15 \, \mathrm{K}
4
Calculate $\Delta G^{\circ}$: ΔG=(8.314Jmol1K1)×(1173.15K)×ln(1.04) \Delta G^{\circ} = - (8.314 \, \mathrm{J \, mol^{-1} \, K^{-1}}) \times (1173.15 \, \mathrm{K}) \times \ln(1.04) ΔG(8.314×1173.15)×0.0392 \Delta G^{\circ} \approx - (8.314 \times 1173.15) \times 0.0392 ΔG384.1Jmol1 \Delta G^{\circ} \approx - 384.1 \, \mathrm{J \, mol^{-1}}
Answer
ΔG384.1Jmol1\Delta G^{\circ} \approx - 384.1 \, \mathrm{J \, mol^{-1}}
Key Concept
Relationship between Gibbs free energy change and equilibrium constant
Explanation
The standard Gibbs free energy change (ΔG\Delta G^{\circ}) for a reaction can be determined from the equilibrium constant (KpK_p) using the equation ΔG=RTlnKp\Delta G^{\circ} = -RT \ln K_p. This relationship shows how the spontaneity of a reaction is related to its equilibrium position.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question