Asksia AI LOGO

Sia

Question
Math
Posted 9 months ago

Question 26. If 1 an eigenvalue of the matrix AA, where A=[20142260a]A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 4 & 2 & -2 \\ 6 & 0 & a\end{array}\right], then a=a=
Sign in to unlock the answer
Answer from Sia
Posted 9 months ago
Solution by Steps
step 1
Given the matrix A=(20142260a)A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 2 & -2 \\ 6 & 0 & a \end{pmatrix}, we know that 1 is an eigenvalue of AA
step 2
To find the value of aa, we need to solve the characteristic equation det(AλI)=0\det(A - \lambda I) = 0 for λ=1\lambda = 1
step 3
Subtract λI\lambda I from AA: AλI=(2101421260a1)=(10141260a1) A - \lambda I = \begin{pmatrix} 2-1 & 0 & -1 \\ 4 & 2-1 & -2 \\ 6 & 0 & a-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 4 & 1 & -2 \\ 6 & 0 & a-1 \end{pmatrix}
step 4
Calculate the determinant of the matrix: det(AI)=10141260a1 \det(A - I) = \begin{vmatrix} 1 & 0 & -1 \\ 4 & 1 & -2 \\ 6 & 0 & a-1 \end{vmatrix} Expanding along the first row: det(AI)=1120a10426a1+(1)4160 \det(A - I) = 1 \cdot \begin{vmatrix} 1 & -2 \\ 0 & a-1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 4 & -2 \\ 6 & a-1 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 4 & 1 \\ 6 & 0 \end{vmatrix}
step 5
Simplify the determinants: det(AI)=1(1(a1)0(2))1(4061) \det(A - I) = 1 \cdot (1 \cdot (a-1) - 0 \cdot (-2)) - 1 \cdot (4 \cdot 0 - 6 \cdot 1) =(a1)(6) = (a-1) - (-6) =a1+6 = a - 1 + 6 =a+5 = a + 5
step 6
Since 1 is an eigenvalue, det(AI)=0\det(A - I) = 0: a+5=0 a + 5 = 0 a=5 a = -5
Answer
a=5a = -5
Key Concept
Eigenvalues and characteristic equation
Explanation
To find the value of aa for which 1 is an eigenvalue, we solve the characteristic equation det(AλI)=0\det(A - \lambda I) = 0 for λ=1\lambda = 1. This involves calculating the determinant of the matrix AIA - I and setting it equal to zero.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question