Asksia AI LOGO

Sia

1962348829's Question
Math
Posted 7 months ago
calculate wrong

Firefighters are holding a nozzle at the end of a hose while trying to extinguish a fire. If the hose inner diameter is 10 cm , the nozzle exit diameter is 5 cm and the water flow rate is 12 m3/min12 \mathrm{~m}^{3} / \mathrm{min}, determine the horizontal resistance force required of the firefighters to hold the nozzle. Express your answer in kN .
\square
Next
Sign in to unlock the answer
Answer from Sia
Posted 7 months ago
Solution by Steps
step 1
Calculate the cross-sectional area of the hose at the nozzle exit: Anozzle=π(dnozzle2)2=π(5 cm2)2=π(2.5 cm)2=6.25π cm2A_{\text{nozzle}} = \pi \left(\frac{d_{\text{nozzle}}}{2}\right)^2 = \pi \left(\frac{5 \text{ cm}}{2}\right)^2 = \pi \left(2.5 \text{ cm}\right)^2 = 6.25\pi \text{ cm}^2
step 2
Calculate the cross-sectional area of the hose at the inner diameter: Ahose=π(dhose2)2=π(10 cm2)2=π(5 cm)2=25π cm2A_{\text{hose}} = \pi \left(\frac{d_{\text{hose}}}{2}\right)^2 = \pi \left(\frac{10 \text{ cm}}{2}\right)^2 = \pi \left(5 \text{ cm}\right)^2 = 25\pi \text{ cm}^2
step 3
Calculate the velocity of water at the nozzle exit using the flow rate: Q=Ahosevhose=AnozzlevnozzleQ = A_{\text{hose}} \cdot v_{\text{hose}} = A_{\text{nozzle}} \cdot v_{\text{nozzle}}
step 4
Given the flow rate Q=12 m3/min=12×106 cm3/minQ = 12 \text{ m}^3/\text{min} = 12 \times 10^6 \text{ cm}^3/\text{min}, convert to seconds: Q=12×106 cm360 s=2×105 cm3/sQ = \frac{12 \times 10^6 \text{ cm}^3}{60 \text{ s}} = 2 \times 10^5 \text{ cm}^3/\text{s}
step 5
Calculate the velocity of water at the nozzle exit: vnozzle=QAnozzle=2×105 cm3/s6.25π cm2=2×1056.25π1018.59 cm/s=10.1859 m/sv_{\text{nozzle}} = \frac{Q}{A_{\text{nozzle}}} = \frac{2 \times 10^5 \text{ cm}^3/\text{s}}{6.25\pi \text{ cm}^2} = \frac{2 \times 10^5}{6.25\pi} \approx 1018.59 \text{ cm/s} = 10.1859 \text{ m/s}
step 6
Calculate the velocity of water at the hose inner diameter: vhose=QAhose=2×105 cm3/s25π cm2=2×10525π254.65 cm/s=2.5465 m/sv_{\text{hose}} = \frac{Q}{A_{\text{hose}}} = \frac{2 \times 10^5 \text{ cm}^3/\text{s}}{25\pi \text{ cm}^2} = \frac{2 \times 10^5}{25\pi} \approx 254.65 \text{ cm/s} = 2.5465 \text{ m/s}
step 7
Apply the Bernoulli equation to find the horizontal resistance force: ΔP=12ρ(vnozzle2vhose2)\Delta P = \frac{1}{2} \rho (v_{\text{nozzle}}^2 - v_{\text{hose}}^2)
step 8
Given ρ=1000 kg/m3\rho = 1000 \text{ kg/m}^3, calculate ΔP\Delta P: ΔP=12×1000 kg/m3×(10.185922.54652) m2/s2=500×(103.756.48)500×97.27=48635 Pa\Delta P = \frac{1}{2} \times 1000 \text{ kg/m}^3 \times (10.1859^2 - 2.5465^2) \text{ m}^2/\text{s}^2 = 500 \times (103.75 - 6.48) \approx 500 \times 97.27 = 48635 \text{ Pa}
step 9
Calculate the force: F=ΔP×Anozzle=48635 Pa×6.25π×104 m295.6 NF = \Delta P \times A_{\text{nozzle}} = 48635 \text{ Pa} \times 6.25\pi \times 10^{-4} \text{ m}^2 \approx 95.6 \text{ N}
step 10
Convert the force to kN: F=95.6 N×1 kN1000 N=0.0956 kNF = 95.6 \text{ N} \times \frac{1 \text{ kN}}{1000 \text{ N}} = 0.0956 \text{ kN}
Answer
0.0956 kN
Key Concept
Bernoulli's Equation
Explanation
Bernoulli's equation relates the pressure, velocity, and height at two points in a fluid flow. In this problem, it helps determine the pressure difference and thus the force required to hold the nozzle.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question