Asksia AI LOGO

Sia

tong41105's Question
Math
Posted 5 months ago
For 4 in this answer, X^TX is not full rank. I don’t think you can just expand (A^TX^TXA)^-1 like that
Explain step3 in the first part of the problem in details
Sign in to unlock the answer
Answer from Sia
Posted 5 months ago
To explain step 3 in detail, we need to show that the hat matrices for X\boldsymbol{X} and X\boldsymbol{X}^{*} are the same, which implies that the fitted values from both models are also the same.

 Step 3: Show that the hat matrices are equal

1. 
Recall the definition of the hat matrix
: The hat matrix H\boldsymbol{H} for a design matrix X\boldsymbol{X} is given by:

   H=X(XTX)1XT
   \boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^{T} \boldsymbol{X})^{-1} \boldsymbol{X}^{T}
   

2. **Express the hat matrix for X\boldsymbol{X}^{*}**: Since X=XA\boldsymbol{X}^{*} = \boldsymbol{X} \boldsymbol{A}, we can substitute this into the hat matrix formula:

   H=X(XTX)1XT
   \boldsymbol{H}^{*} = \boldsymbol{X}^{*}(\boldsymbol{X}^{*T} \boldsymbol{X}^{*})^{-1} \boldsymbol{X}^{*T}
   

   Substituting X=XA\boldsymbol{X}^{*} = \boldsymbol{X} \boldsymbol{A}:

   H=XA((XA)T(XA))1(XA)T
   \boldsymbol{H}^{*} = \boldsymbol{X} \boldsymbol{A} \left( (\boldsymbol{X} \boldsymbol{A})^{T} (\boldsymbol{X} \boldsymbol{A}) \right)^{-1} (\boldsymbol{X} \boldsymbol{A})^{T}
   

3. 
Simplify the expression
: We can simplify (XA)T(XA)(\boldsymbol{X} \boldsymbol{A})^{T} (\boldsymbol{X} \boldsymbol{A}):

   (XA)T(XA)=ATXTXA
   (\boldsymbol{X} \boldsymbol{A})^{T} (\boldsymbol{X} \boldsymbol{A}) = \boldsymbol{A}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{A}
   

   Therefore, we have:

   H=XA(ATXTXA)1ATXT
   \boldsymbol{H}^{*} = \boldsymbol{X} \boldsymbol{A} \left( \boldsymbol{A}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{A} \right)^{-1} \boldsymbol{A}^{T} \boldsymbol{X}^{T}
   

4. 
Use the property of the inverse
: Since A\boldsymbol{A} is nonsingular, we can use the property of inverses:

   (ATXTXA)1=A1(XTX)1AT
   \left( \boldsymbol{A}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{A} \right)^{-1} = \boldsymbol{A}^{-1} \left( \boldsymbol{X}^{T} \boldsymbol{X} \right)^{-1} \boldsymbol{A}^{-T}
   

5. 
Substituting back
: Substituting this back into our expression for H\boldsymbol{H}^{*}:

   H=XAA1(XTX)1ATATXT
   \boldsymbol{H}^{*} = \boldsymbol{X} \boldsymbol{A} \boldsymbol{A}^{-1} \left( \boldsymbol{X}^{T} \boldsymbol{X} \right)^{-1} \boldsymbol{A}^{-T} \boldsymbol{A}^{T} \boldsymbol{X}^{T}
   

   This simplifies to:

   H=X(XTX)1XT=H
   \boldsymbol{H}^{*} = \boldsymbol{X} \left( \boldsymbol{X}^{T} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{T} = \boldsymbol{H}
   

 Conclusion

Since we have shown that H=H\boldsymbol{H}^{*} = \boldsymbol{H}, it follows that the hat matrices for X\boldsymbol{X} and X\boldsymbol{X}^{*} are the same. Consequently, the fitted values from both models will also be the same, as they are derived from the same hat matrix. 

This completes the explanation for step 3! If you have any further questions or need clarification on any part, feel free to ask!

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question