Asksia AI LOGO

Sia

佳玮's Question
Math
Posted 5 months ago
1、甲、乙、丙3位同学同时独立参加《概率论与数理统计》考试,不及格的概率分别为1/2 1/3 1/4
,求:

(1)至少有1位同学不及格的概率;

(2)如果已经知道这3位同学中有2位不及格,求其中一位是同学甲的概率。
Sign in to unlock the answer
Answer from Sia
Posted 5 months ago
Solution by Steps
step 1
计算至少有1位同学不及格的概率,可以先计算所有同学都及格的概率。设甲、乙、丙的及格概率分别为 112=121 - \frac{1}{2} = \frac{1}{2}, 113=231 - \frac{1}{3} = \frac{2}{3}, 114=341 - \frac{1}{4} = \frac{3}{4},则所有同学都及格的概率为:

P(都及格)=12×23×34=14 P(\text{都及格}) = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{4} 
step 2
至少有1位同学不及格的概率为:

P(至少1位不及格)=1P(都及格)=114=34 P(\text{至少1位不及格}) = 1 - P(\text{都及格}) = 1 - \frac{1}{4} = \frac{3}{4} 
step 3
现在计算如果已知有2位同学不及格,甲同学不及格的条件概率。设事件 AA 为甲不及格,事件 BB 为有2位同学不及格。根据条件概率公式:

P(AB)=P(AB)P(B) P(A|B) = \frac{P(A \cap B)}{P(B)} 
step 4
计算 P(B)P(B),即有2位同学不及格的概率。可以分为三种情况:甲、乙不及格;甲、丙不及格;乙、丙不及格。

P(B)=P(甲不及格, 乙不及格)+P(甲不及格, 丙不及格)+P(乙不及格, 丙不及格) P(B) = P(\text{甲不及格, 乙不及格}) + P(\text{甲不及格, 丙不及格}) + P(\text{乙不及格, 丙不及格}) 
step 5
计算每种情况的概率:

- 甲不及格,乙不及格,丙及格: P(甲不及格)×P(乙不及格)×P(丙及格)=12×13×34=18P(\text{甲不及格}) \times P(\text{乙不及格}) \times P(\text{丙及格}) = \frac{1}{2} \times \frac{1}{3} \times \frac{3}{4} = \frac{1}{8}
- 甲不及格,丙不及格,乙及格: P(甲不及格)×P(丙不及格)×P(乙及格)=12×14×23=112P(\text{甲不及格}) \times P(\text{丙不及格}) \times P(\text{乙及格}) = \frac{1}{2} \times \frac{1}{4} \times \frac{2}{3} = \frac{1}{12}
- 乙不及格,丙不及格,甲及格: P(乙不及格)×P(丙不及格)×P(甲及格)=13×14×12=124P(\text{乙不及格}) \times P(\text{丙不及格}) \times P(\text{甲及格}) = \frac{1}{3} \times \frac{1}{4} \times \frac{1}{2} = \frac{1}{24}
step 6
计算 P(B)P(B)

P(B)=18+112+124=324+224+124=624=14 P(B) = \frac{1}{8} + \frac{1}{12} + \frac{1}{24} = \frac{3}{24} + \frac{2}{24} + \frac{1}{24} = \frac{6}{24} = \frac{1}{4} 
step 7
计算 P(AB)P(A \cap B),即甲不及格且有2位同学不及格的概率:

P(AB)=P(甲不及格, 乙不及格)=18 P(A \cap B) = P(\text{甲不及格, 乙不及格}) = \frac{1}{8} 
step 8
代入条件概率公式:

P(AB)=P(AB)P(B)=1814=12 P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2} 

Answer
(1) 至少有1位同学不及格的概率为 34\frac{3}{4}; (2) 甲同学不及格的概率为 12\frac{1}{2}
Key Concept
概率的计算和条件概率的应用
Explanation
通过计算所有同学都及格的概率,得出至少有1位同学不及格的概率;同时利用条件概率公式,计算在已知有2位同学不及格的情况下,甲同学不及格的概率。

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question