Asksia AI LOGO

Sia

Question
Math
Posted 11 months ago
请解释每个详细的步骤的原因
17 Suppose F=C\mathbf{F}=\mathbf{C} and PL(V)P \in \mathcal{L}(V) is such that P2=PP^{2}=P. Prove that the characteristic polynomial of PP is zm(z1)nz^{m}(z-1)^{n}, where m=dimm=\operatorname{dim} null PP and n=dimrangePn=\operatorname{dim} \operatorname{range} P.

SOLUTION First we will prove that
V=nullPrangeP.
V=\operatorname{null} P \oplus \operatorname{range} P .


To do this, first suppose uu \in null PP \cap range PP. Then Pu=0P u=0, and there exists wVw \in V such that u=Pwu=P w. Applying PP to both sides of the last equation, we have Pu=P2w=PwP u=P^{2} w=P w. But Pu=0P u=0, so this implies that Pw=0P w=0. Because u=Pwu=P w, this implies that u=0u=0. Because uu was an arbitrary vector in null PP \cap range PP, this implies that null PP \cap range P={0}P=\{0\}.
Now suppose vVv \in V. Then obviously
v=(vPv)+Pv.
v=(v-P v)+P v .


Note that P(vPv)=PvP2v=0P(v-P v)=P v-P^{2} v=0, so (vPv)(v-P v) \in null PP. Clearly PvrangePP v \in \operatorname{range} P. Thus the equation above shows that vnullP+rangePv \in \operatorname{null} P+\operatorname{range} P. Because vv was an arbitrary vector in VV, this implies that V=nullP+rangePV=\operatorname{null} P+\operatorname{range} P.

We have shown that null PrangeP={0}P \cap \operatorname{range} P=\{0\} and V=V= null P+rangePP+\operatorname{range} P. Thus V=V= null PrangePP \oplus \operatorname{range} P (by 1.46 ).
Note that
G(0,P)E(0,P)=nullP.
G(0, P) \supseteq E(0, P)=\operatorname{null} P .


If vrangePv \in \operatorname{range} P, then there exists uVu \in V such that v=Puv=P u. Applying PP to both sides shows that Pv=P2u=Pu=vP v=P^{2} u=P u=v, which implies that vE(1,P)v \in E(1, P). Hence
G(1,P)E(1,P) range P
G(1, P) \supseteq E(1, P) \supseteq \text { range } P \text {. }


Thus m+n=dimVm+n=\operatorname{dim} V. Because the sum of the multiplicities of the eigenvalues of PP equal dimV\operatorname{dim} V (by 8.25 ), the inclusions above must be equalities and there are no other eigenvalues of PP. Thus the characteristic polynomial of PP is zm(1z)nz^{m}(1-z)^{n}.
Sign in to unlock the answer
Answer from Sia
Posted 11 months ago
Solution by Steps
step 1
To prove the characteristic polynomial of P P , we first show that V V can be decomposed into a direct sum of the null space and range of P P
step 2
If unull Prange P u \in \text{null } P \cap \text{range } P , then Pu=0 P u = 0 and u=Pw u = P w for some wV w \in V . Applying P P gives Pu=P2w=Pw P u = P^2 w = P w , hence u=0 u = 0 . This implies null Prange P={0} \text{null } P \cap \text{range } P = \{0\}
step 3
For any vV v \in V , we can write v=(vPv)+Pv v = (v - P v) + P v , where (vPv)null P (v - P v) \in \text{null } P and Pvrange P P v \in \text{range } P , showing V=null P+range P V = \text{null } P + \text{range } P
step 4
Since null Prange P={0} \text{null } P \cap \text{range } P = \{0\} and V=null P+range P V = \text{null } P + \text{range } P , we have V=null Prange P V = \text{null } P \oplus \text{range } P
step 5
The generalized eigenspace G(0,P) G(0, P) contains the eigenspace E(0,P)=null P E(0, P) = \text{null } P , and similarly G(1,P) G(1, P) contains E(1,P) E(1, P) which contains the range of P P
step 6
Since m+n=dim V m + n = \text{dim } V and the sum of the multiplicities of the eigenvalues equals dim V \text{dim } V , the characteristic polynomial of P P is zm(1z)n z^m(1 - z)^n , where m=dim null P m = \text{dim null } P and n=dim range P n = \text{dim range } P
Answer
The characteristic polynomial of P P is zm(1z)n z^m(1 - z)^n , where m=dim null P m = \text{dim null } P and n=dim range P n = \text{dim range } P .
Key Concept
Characteristic Polynomial of a Projection Operator
Explanation
The characteristic polynomial of a projection operator P P that satisfies P2=P P^2 = P is given by zm(1z)n z^m(1 - z)^n , where m m is the dimension of the null space of P P , and n n is the dimension of the range of P P . This is because P P has only 0 and 1 as its eigenvalues, with their multiplicities adding up to the dimension of the vector space V V .

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question