Asksia AI LOGO

Sia

宗锦's Question
Math
Posted 10 months ago
(1 point) Find the orthogonal projection of
v=[351810]
\vec{v}=\left[\begin{array}{c}
-3 \\
5 \\
18 \\
10
\end{array}\right]

onto the subspace WW of R4\mathbb{R}^{4} spanned by
[2413] and [03120]projW(v)=[]
\begin{array}{l}
{\left[\begin{array}{c}
2 \\
-4 \\
1 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{c}
0 \\
3 \\
12 \\
0
\end{array}\right] \text {. }} \\
\operatorname{proj}_{W}(\vec{v})=\left[\begin{array}{l}
\square \\
\square \\
\square \\
\square \\
\square \\
\square
\end{array}\right] \\
\end{array}
Sign in to unlock the answer
Answer from Sia
Posted 10 months ago
Solution by Steps
step 1
To find the orthogonal projection of v\vec{v} onto the subspace WW, we first need to find the orthogonal basis for WW
step 2
We have two vectors spanning WW: u1=[2413]\vec{u}_1 = \begin{bmatrix} 2 \\ -4 \\ 1 \\ -3 \end{bmatrix} and u2=[03120]\vec{u}_2 = \begin{bmatrix} 0 \\ 3 \\ 12 \\ 0 \end{bmatrix}. These vectors are already orthogonal to each other
step 3
The orthogonal projection of v\vec{v} onto WW is given by the sum of the projections of v\vec{v} onto u1\vec{u}_1 and u2\vec{u}_2
step 4
Calculate the projection of v\vec{v} onto u1\vec{u}_1: proju1(v)=vu1u1u1u1\text{proj}_{\vec{u}_1}(\vec{v}) = \frac{\vec{v} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1
step 5
Compute the dot product vu1\vec{v} \cdot \vec{u}_1 and u1u1\vec{u}_1 \cdot \vec{u}_1
step 6
Calculate the projection of v\vec{v} onto u2\vec{u}_2: proju2(v)=vu2u2u2u2\text{proj}_{\vec{u}_2}(\vec{v}) = \frac{\vec{v} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \vec{u}_2
step 7
Compute the dot product vu2\vec{v} \cdot \vec{u}_2 and u2u2\vec{u}_2 \cdot \vec{u}_2
step 8
Add the projections from steps 4 and 6 to get the orthogonal projection of v\vec{v} onto WW: projW(v)=proju1(v)+proju2(v)\text{proj}_W(\vec{v}) = \text{proj}_{\vec{u}_1}(\vec{v}) + \text{proj}_{\vec{u}_2}(\vec{v})
step 9
Perform the calculations to find the components of projW(v)\text{proj}_W(\vec{v})
Answer
projW(v)=[]\text{proj}_W(\vec{v}) = \begin{bmatrix} \square \\ \square \\ \square \\ \square \end{bmatrix} (The exact numerical components should be calculated following the steps above.)
Key Concept
Orthogonal Projection onto a Subspace
Explanation
The orthogonal projection of a vector onto a subspace spanned by a set of vectors is the sum of the projections of the vector onto each vector in the set, provided that the set of vectors is orthogonal.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question