Asksia AI LOGO

Sia

Question
Chemistry
Posted 10 months ago
1. a) Calculate the value of standard molar Gibbs free energy change of chemical reaction at 298 K298 \mathrm{~K} using the data given below:
Is the chemical reaction exothermic reaction or endothermic? WHY?
4/3Al(s)+O2( g)2/3Al2O3( g) at 298 K
4 / 3 \mathrm{Al}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 / 3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~g}) \text { at } 298 \mathrm{~K}

b) Calculate the enthalpy and entropy of chemical reaction at 1000 K1000 \mathrm{~K}. Leave calculations in the integral form after putting cp values. Organize them as we do it in the class.
4/3Al(l)+O2( g)2/3Al2O3( g) at 1273 K
4 / 3 \mathrm{Al}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 / 3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~g}) \text { at } 1273 \mathrm{~K}


DATA:
HAl(sl)=10500\triangle \mathrm{H} \mathrm{Al}(\mathrm{s} \rightarrow \mathrm{l})=10500 joules at 932K\mathbf{9 3 2} \mathrm{K},
Standard molar enthalpy formation and entropy at 298K:
ΔHAl2O3=1674000\Delta \mathrm{H}^{{ }^{\circ}} \mathrm{Al}_{2} \mathrm{O}_{3}=-1674000 joules,
SoAl(s)=28.3 J/K,SoAl2O3=59.6 J/K,SO2=205 J/K
\mathrm{S}^{\mathrm{o} \mathrm{Al}}(\mathrm{s})=28.3 \mathrm{~J} / \underline{\underline{\mathrm{K}},} \quad \mathrm{S}^{\mathrm{o}} \mathrm{Al}_{2} \mathrm{O}_{3}=59.6 \mathrm{~J} / \mathrm{K}, \quad \mathrm{S}^{\circ} \mathrm{O}_{2}=205 \mathrm{~J} / \mathrm{K}
Sign in to unlock the answer
Answer from Sia
Posted 10 months ago
Solution
1
Write the balanced chemical equation: The balanced chemical equation for the reaction given is: 4Al(s)+3O2(g)2Al2O3(s)4 \mathrm{Al}(s) + 3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(s). However, the equation provided in the question is not balanced correctly. To balance it, we need to multiply the entire reaction by 3 to get whole numbers for the stoichiometric coefficients: 4Al(s)+3O2(g)2Al2O3(s)4 \mathrm{Al}(s) + 3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(s)
2
Calculate the standard molar Gibbs free energy change ($\Delta G^\circ$): Use the formula ΔG=ΔHTΔS\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ. The standard molar enthalpy change (ΔH\Delta H^\circ) for the formation of Al2O3\mathrm{Al}_{2} \mathrm{O}_{3} is given as 1674000-1674000 joules. The standard molar entropy change (ΔS\Delta S^\circ) for the reaction can be calculated using the standard molar entropies of reactants and products: ΔS=(2×SAl2O3)(4×SAl+3×SO2)\Delta S^\circ = (2 \times S^\circ_{\mathrm{Al}_{2} \mathrm{O}_{3}}) - (4 \times S^\circ_{\mathrm{Al}} + 3 \times S^\circ_{\mathrm{O}_{2}}). Plugging in the values: ΔS=(2×59.6J/K)(4×28.3J/K+3×205J/K)=319.8J/K\Delta S^\circ = (2 \times 59.6 \mathrm{J/K}) - (4 \times 28.3 \mathrm{J/K} + 3 \times 205 \mathrm{J/K}) = -319.8 \mathrm{J/K}. Now calculate ΔG\Delta G^\circ: ΔG=1674000J298K×(319.8J/K)=1674000J+95364.4J=1578635.6J\Delta G^\circ = -1674000 \mathrm{J} - 298 \mathrm{K} \times (-319.8 \mathrm{J/K}) = -1674000 \mathrm{J} + 95364.4 \mathrm{J} = -1578635.6 \mathrm{J}
3
Determine if the reaction is exothermic or endothermic: Since the standard molar enthalpy change (ΔH\Delta H^\circ) is negative, the reaction is exothermic
Answer
ΔG=1578635.6J\Delta G^\circ = -1578635.6 \mathrm{J}, and the reaction is exothermic.
Key Concept
Gibbs free energy change and reaction heat
Explanation
The Gibbs free energy change indicates the spontaneity of a reaction, and a negative enthalpy change indicates an exothermic reaction.
Solution
1
Calculate the enthalpy change at 1000 K: The enthalpy change at 1000 K can be calculated using the heat capacities and the enthalpy of phase transition. Since the reaction involves aluminum in the liquid state at 1273 K, we must account for the phase transition from solid to liquid at 932 K. The enthalpy change at 1000 K is given by ΔH=ΔH+2981000ΔCpdT\Delta H = \Delta H^\circ + \int_{298}^{1000} \Delta C_p \, dT, where ΔH\Delta H^\circ is the standard enthalpy change and ΔCp\Delta C_p is the change in heat capacity
2
Calculate the entropy change at 1000 K: The entropy change at 1000 K can be calculated using the standard molar entropies and the temperature dependence of entropy. The entropy change at 1000 K is given by ΔS=ΔS+2981000Δ(CpT)dT\Delta S = \Delta S^\circ + \int_{298}^{1000} \Delta \left(\frac{C_p}{T}\right) \, dT, where ΔS\Delta S^\circ is the standard entropy change and Δ(CpT)\Delta \left(\frac{C_p}{T}\right) is the change in the temperature-dependent part of entropy
Answer
The enthalpy and entropy changes at 1000 K are given by the integrals ΔH=ΔH+2981000ΔCpdT\Delta H = \Delta H^\circ + \int_{298}^{1000} \Delta C_p \, dT and ΔS=ΔS+2981000Δ(CpT)dT\Delta S = \Delta S^\circ + \int_{298}^{1000} \Delta \left(\frac{C_p}{T}\right) \, dT, respectively. The exact values depend on the heat capacities, which are not provided.
Key Concept
Temperature dependence of enthalpy and entropy
Explanation
The enthalpy and entropy of a reaction can change with temperature, and these changes can be calculated using integrals involving heat capacities.

Not the question you are looking for? Ask here!

Enter question by text

Enter question by image

Unlock Smarter Learning with AskSia Super!

Join Super, our all-in-one AI solution that can greatly improve your learning efficiency.

30% higher accuracy than GPT-4o
Entire learning journey support
The most student-friendly features
Study Other Question